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FACTORIZATION FOR NON-NEVANLINNA
CLASSES OF ANALYTIC FUNCTIONS

BY
ELIYAHU BELLER

ABSTRACT

A generalization of the Blaschke product 1s constructed. This product enables
one to factor out the zeros of the members of certain non-Nevanlinna classes of
functions analytic in the unit disc, so that the remaining (non-vanishing)
functions still belong to the same class. This is done for the classes &™"
O<n<w) and B (0<n<2) defined as follows: fE L™ iff [f(z)|=
G(l—|z)", fe B iff|f(z)| = exp{C,(1 —|z[) "}, where C; depends on f.

1. Introduction: generalized Blaschke products

Non-Nevanlinna classes of analytic functions have been a subject of recent
interest, in particular with respect to questions of zero sets and factorization.
One example of such a class is given by &/ ™" (0 < n < ), the class of all functions
analytic in the unit disc satisfying

f)l=ca-lzy"  (z]<D)
for some C >0. If we equip &/ ™" with the norm
17110 = sup (1= |2 1)l
then it becomes a Banach space. These spaces are closely related to the Bergman
A" spaces (0 < p < x) defined by
fEAT © ff‘ . [f(z)]Pdxdy <=, f analytic in [z|<]1.

Forp = 1, A? is also a Banach space under the obvious norr;l, and for all positive
p and n, the following inclusions hold:

A" CAVTE e >0; AP C oA

(The second inclusion follows from the fact that |f(z)]” is subharmonic.)
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The classes & ", and their union & == U .o ", were studied extensively
by B. Korenblum [3]. In dealing with the factorization of &/ ~, he constructed a
generalization of the Blaschke product [3, sec. 6.1], and showed that if B(z) is
the generalized Blaschke product for any subset of the zero set of f € o ™", then
g € A~*"*(Ve >0), where g = f/B.

In his study of A” zero sets, C. Horowitz [2, sec. 7] defined a different
generalization of the Blaschke product, namely,

(1) h@) =[] Bu(2)@- Ba(2)),
where B,(z) is the usual Blaschke factor:
@) Bu(z)J—Zl% (0<|a|<1); Bo(z) = z.

Horowitz proved that if {z, } is any subset of the zero set of f € A”, and h(z)is as
in (1), then f/h also belongs to the same A”. (As we shall soon see, Horowitz’s
product does the same job for o ™" spaces.)

We now turn to functions characterized by an exponential growth rate. For
0<n<ow, let B~ denote the algebra of all functions analytic in | z | < 1, which
satisfy

f@lsew (=) (zl<D

for some C >0.

H.S. Shapiro and A. L. Shields [4] obtained the following interesting result: If
fE B™ n <1, then those zeros {z.} of f which lie on a single radius satisfy the
Blaschke condition 2(1— |z, |) <.

Again, we have a related hierarchy of algebras Bf (0 <p <x), defined as
follows:

fEB’ & JJ' (log™| f(2)])y dxdy < o, f analyticin |z|<1.
Iz]<1
Beller [1] studied the zero sets of B functions. 37" and B” are related by the
following inclusions:
B CBY Ye>0(0<n<w), B> CRB" (I=p <)

As far as B " classes are concerned, the utility of Horowitz’s (or Koren-
blum’s) product is limited by the fact that it converges only if Z(1 — |z [’ <,
while for f € 87", n = 1, it is possible for 2(1 — |z, |)’ to diverge, as we shall see



322 E. BELLER Israel J. Math.

in the sequel. In order to overcome this difficulty, we define, for m >0, the
following product:

@ hn(2)=[1 1= {1- Bu2)),

where B,, (z) is the Blaschke factor as in (2). Since w = 1 — B,,(z) lies within the
disc/w —1/<1 for |z]<1, we are able to take the principal branch of
{1-B..(z)}™ in case m is not an integer.

In view of the inequality

@ 1-B.@)St=(-]a])  (z]=1),

we conclude that the product (3) converges if £(1 - |z, |)” <, and, in that case,
defines a function analytic in the unit disc. Note that h(z) is just the classical
Blaschke product, while hy(z) is the Horowitz-Blaschke product (1).

It is obvious that h,,(z) vanishes at all the z,. For m = 6, it has no other zeros;
this is a consequence of the following lemma:

Lemma 1. If 0<m =6 and 0<|w]|<]1, then (1—-w)"#1.

Proor. We may assume, without loss of generality, that 0 =arg(1-w)<
/2. 1f (1 - w)™ were equal to 1, then we would have |1 — w| = 1, which implies
that O<arg(l-w)<w/3. Thus, O<arg(l—-w)" <mmw/3=2mn, a
contradiction. W

It is easily seen that Lemma 1 no longer holds when m > 6, and thus, for such
m, h..(z) cannot be used for any kind of factorization. For our specific purpose.
we will need an inequality which holds only for m = 3:

LEmma 2. If 0<m =3 and |w|<1, then
() 1-(1-w)"|z1-(1-|w|"

ProoF. Let us write 1 —w = re”. We may again assume that 0= 0 < 7/2.
Now arg(1-w)™ =m0 <3#/2. Thus, if m8 = «/2, the left-hand side of (5) is
greater than 1, and the inequality certainly holds. Consequently, we may assume
that mé < «/2.

Now inequality (5) is equivalent to F(0)=0, (0= 0 < m/2), where
F(8)=r"—2r"cosm@ —(1— {1+ r*—2rcos " +2(1 {1+ r’—2rcos O }})".

We have F(0) =0, and if one keeps in mind that m@ < /2, a simple calculation
shows that F'(8)>0 for 0<d<x/2. N
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In the next section, we will use our product to factor out the zeros of ™"
functions in such a way that the quotient remains in & "; in Section 3, the same
will be done for 8" functions with n <2. (We are unable to extend the 37"
result to n =2 because, in that case, inequality (5) breaks down.) As for the
growth rate of h..(z) itself, a straightforward estimate based on (4) yields an
upper bound on the growth, namely

2"K
h.(z)|<ex (————;),
where K = £¢.,(1 - |z« |)”. What yet remains to be clarified is the precise growth
rate for given {z}.

2. Factorization of &/ " functions

THEOREM 1. Let {z.} be any subset of the zero setof f € ™" (0< n <), and
for any 1< m =3, let h,.(z) be the generalized Blaschke product for {z.}, as in
(3). Then

(i) hw(z) is analytic in |z | <1, with zeros precisely at {z.}.
(ii) Set g = f/h... There exists a number A (n, m), depending only on n and m,
such that

Igl-n= A m)|fl-.
CoroLLARY 1. FEvery subset of an o™ zero set is an ™" zero set.
Before proving Theorem 1, we must establish some preliminary facts:

ProrosiTioNn 1. If f€ ™" (0< n <), with zero set {a.}, and if f(0)# 0,
then

6) f[ la | = Tf((;)CfN (N=1,2,3,--1),

where C = || f|

ReMARK 1. Inequality (6) implies the well-known conclusion that
(1 —|a ) < for all € >0.

ReEMARK 2. Using the same construction as Horowitz [2, Sec. 4], it is not
difficult to see that the exponent of N in Proposition 1 is the best possible, and
that for0 < n < p < «, there exist &7 zero sets which are not &{™" zero sets.

ProoF OF ProrosiTion 1. First let us assume that {a.} is an ordered zero
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sequence of f,i.e,0<]a,|= =.... From Jensen’s formula we can conclude
(cf. [2, Sec. 3]) that for 0 =r <1, and for all positive integers N,

a:

r

) FO T = exp(@myt [ 10gl (el ao).

lakl

Since || f]|-» = C, the right hand side of (7) is at most C/(1— r)", so that
N
[Tlal"=ClfO"r 0= O<r<;N=12.3,).
k=1
For each N, choose r = N/(N + n). Elementary estimates then yield (6). If we

arbitrarily reorder the zero sequence of f, then (6) holds a fortiori. W

LEMMA 3. Let N be a natural number, and let F € C'[0,1] such that F(x) is
strictly increasing and xF'(x)/F(x) is strictly decreasing. If 0<a, =S a,=---=
av=1and 0<b =b,=---=by <1, and if

l—[ak—_>-l_[bk (n=1,2,"',N),
k=1 k=1
then

"lj F(a,.)é"ljl F(b.).

Proor. Horowitz [2a, lemma 7.12] proved a special case of this lemma, in
which F(x)= x(2—x), b, = 1/C, and b = ((k — 1)/k)*, (k = 2), for some 8 >0.
The proof of our generalized lemma proceeds exactly as his proof, to which the
reader is referred. The only detail to be checked is that

G(8)=F(a.e *){F(an...e®*)}*

is a strictly decreasing function of & for 8 >0, where a, = a.., <1, and k is any
natural number. But an elementary calculation shows that G'(6)<0 iff
xF'(x)/F(x) is strictly decreasing. W

LeEmMMA 4. Let n and C be positive numbers, and let m >1. Let 0<a, = a,=
=L If

N
[1 ac'=cCN”
k=1

for all natural N, then

@®) kﬂ {1-(1-a)"}"'= CB(n,m),

where B(n, m) depends only on n and m.
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Proor. Let us first assume that C =2". Then we can apply Lemma 3, with
F(x)=1-(1-x)", by=1/C, by =(1~1/k)" (k =2,3,---), from which we can
conclude that

© i-a-ayys[la-a-bry
Now set
(10) N = max ([1/(2n)], [2""2n]),

where [ -] is the greatest-integer function. We have
N N

(11) [[t-a-b)y'=]] bi'= N~
k=1 k=1

Now if n>1, we have b, >1—-n/k, and if 0<n<l1, b >
1—(n/k)—1/2k*—2k). Thus, in any case, b, >1-2n/k provided that k =
1+ 1/2n). If, in addition, k = 2""2n, then we have (2n/k)™ <; and therefore

—log(1-(1-b)™)= —log(1- Q2n/k)")<= <2kn> .

Thus, taking (10) into account, we have

Combining this with (9) and (11) yields
[T1-(-a)"}y'=CD(nm)
k=1

where D(n,m)= N"exp(32n)"/{2(m —1)N™'}), and N is given by (10). If
¢ <27 then (8) remains correct if we write B(n,m)=2"D(n,m). N

Prooror THEOREM 1. Part (i) is true in view of Lemma 1 and the first remark
to Proposition 1. To prove (ii), set c.(z)=(w —z)/(1- wz), (w]|<1), and
fu(z) = f(c.(2)). Writing C = f|-. we have

c e -|wh"
<

w-—z >" a-lzph

1—wz

(12) ()=
(1-]

the last inequality following from an elementary estimate.
Let {a.} be the complete zero set of f(z). Then {c.(a«)} is the complete zero
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set of f.(z). Now let {z} be an arbitrary subset of the zero set of f. Writing
g = f/h., and taking into account Lemma 2, together with the fact that

IBak(W)I = l Ca,‘(W)I = 'Cw(ak)l!
we have

gl =170l [T (1 ={1- B

(13) .
= 1fw)I[1 (= {1~ lew(@)m)

Now assume that f,(0)= f(w)# 0. Applying Proposition 1 to f., in light of
(12), we conclude that

(14) klj lew(a) "= €j2e)",Cf‘((i);'| L N (N=1,2.3,--.

Lemma 4, applied to (14), and combined with (13), finally yields
lg(w)|=CA(n,m)(1—-|w )™

By continuity, this inequality holds also at those w for which f(w)=0. B

3. Factorization of %" functions
We begin with an estimate on the moduli of the zeros of 87" functions.

THEOREM 2. Let f€ B™" (0< n < =) be such that
1s) folsexn (=) (1<
If {ai} is its zero set, and if f(0)# 0, then
(16) T] a|" = |fO) e ™ explEmCIN"  (N=1,2,-),

where E(n) and F(n) depend only on n.

Proor. First assume that {a.} is an ordered zero sequence. From Jensen’s
formula and (15) we conclude that

S log 1,< € _ Nlogr—log|f(0)|

for all 0<r<1, and for N=1,2,3, -,
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For N = (1/3)nC2""", we choose r = 1~ (2nC/3N)""*". For such N we have
r =3, and therefore —logr = (3/2)(1 - r) holds. Substitution into (17) yields

(18) “21 logl_zl;—(gE(")C'/("”)N"”"”)‘log,f(O)I (N = (13)n2"'C),

where E(n)= (2n/3)""*"+ (2n/3)™™"*V. For N <(1/3)n2""'C,

F(n)C

(19) [lar =] lals STl

where N* =[2""'nC/3], and F(n) = 2""*?"*Y(n/3)""*2E(n). Inequalities (18)
and (19) together yield (16) for all N. If {a.} is arbitrarily reordered, then (16)
holds a fortiori. B

RemaRk. If f(z) has a zero of order p at z = 0, then one needs only to divide
by z? before applying Theorem 2.

CorOLLARY 2. Iff € B7" (0 < n < »), with zero set {a}, then for all ¢ >0,
(20) > (I-fay <o
k=1

ProoF. Let {a,} be ordered. It follows from Theorem 2 that =i (1 - |ax |) =
O(N""*Y)_Since {| a. |} is non-decreasing, we have N(1—|an )= Zi. (1 |a]),
and therefore 1—|a.|= O(k™""*"), which implies (20). B

. ReMARK. With the aid of a Horowitz-type construction used by Beller in [1,
p. 79), it is not difficult to show that the exponent of N in Theorem 2 is sharp.
Consequently, the n + 1 appearing in the exponent of (20) is best possible. In the
same way, for n < p, one can construct B " zero sets which are not 87" zero
sets.

LEMMA 5. Let 0<n<», and m >n+1. Set B = n/(n+1). There exists a
number G(n, m), depending only on n and m, such that for b= G(n,m) and
a = exp(— b(2—2%)), the following implication holds:

If0<a=a,=---=1, and

N
H d=aexp(bN®) (N=1,2,3,)

then

21) kf] 1=(1-a)")" = aexp(3b™).
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Proor. After applying Lemma 3 to the case where F(x)=1-(1—x)™ and
by=e"/a, b =exp{—b(k? = (k —1)*)} (k=2,3,--),

we conclude that

(22) I {1—(1—ak)M}*'§ﬁ{1—(1—bk)"}-'.

k=1

Thus, we must estimate the right hand side of (22). Setting N = [b""'], we have
N N
(23) [T{-a-b)"y'=]] bi'=aexp(bN®)=aexp(b™).
k=1 k=1

In light of the elementary inequality
kP —(k-1P =k (0<B<1; k=1,2,--1)

we have

4 tog [] {1-(1=b)"y'< = 3 log(1-{1-exp(~bk® ")

Now there exists a number K,., 0 < K,, =, such that
—log(1-(1-e*y")<x™ (0<x<K,).
Indeed, since m >1, we have
—log(1-=(1—e*)")=x"—3mx™""+ higher powers of x.

Thus, if b= K,"" this insures that for k = N+ 1, we have bk? '< K, and
therefore

— 2 log(1—{l—exp(— bk* ")) < 2 pmk D
kN k=N+1

@5) < N e ¢ (et y-on- e
Now

(26) b (b = 1)y T = oyt
provided

b 2 H(n’ m)E (1 - 2‘("*1)/(M~n71))~l/(n+1).

Thus, if we set G(n, m)=max(K,"", H(n, m)), then (22), (23), (24), (25), and
(26) together yield (21). W
We are now able to prove the main theorem:
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THEOREM 3. Let f€ B7" (0< n <2), let m be such thatn+1<m <3, and
let {2.} be any subset of the zero set of f. If h.(2) is the generalized Blaschke
product for {z.}, as in (3), then

(i) h.(2) is analytic in |z| <1 with zeros precisely at {z.}.

@) flh,=g€EB™".

CorOLLARY 3. For n <2, every subset of a B™" zero set is a B™" zero set.

Proor oF THEOREM 3. Part (i) follows immediately from Corollary 2. To
prove (ii), we use the same notation as in the proof of Theorem 1. If

f@lsen (=) (z1<D.
then, analogous to inequality (12), we have, for any |w|<1,
@) f@lsen (P gz1<n,

Assume, again, that f(w) # 0. Keeping (27) in mind, Theorem 2, applied to f,,
yields

F*(n)C E*(n)CVD
@8) nlcw(ak)l‘lf(o)lex‘)( ) e (B V)

for N=1,2,3,--+, where F*(n)=2"max(l, F(n)), and E*(n)= E(n)2"""".
We now apply Lemma 5 to (28) with

% * Hn+1)
Lo exp( F (n)C"); p=EXmC T
)TN = w]) 1={wl
(Note that (27), for z = 0, together with the fact that F*(n)= 2", implies that
a z exp(— b(2—2%)), as required.) The condition b = G(n, m) in Lemma 5 is
equivalent to |w|= 1~ J(n, m), where J = (E*/G)"*""C"". Thus, for such w,
Lemma 5, combined with (13), yields
Kgn!C )

W - ex n b4
where K(n)= F*(n)+3{E*(n)}"*'. Now set L =supju=i-n|g(w)| and M =
max (e, L). Then for all w (such that f(w)# 0) we have

g w)] 5 exp (LM

By continuity, this inequality holds also for those w which are zerosof f. W
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