FACTORIZATION FOR NON-NEVANLINNA CLASSES OF ANALYTIC FUNCTIONS

ΒY

ELIYAHU BELLER

ABSTRACT

A generalization of the Blaschke product is constructed. This product enables one to factor out the zeros of the members of certain non-Nevanlinna classes of functions analytic in the unit disc, so that the remaining (non-vanishing) functions still belong to the same class. This is done for the classes \mathscr{A}^{-n} $(0 < n < \infty)$ and \mathscr{B}^{-n} (0 < n < 2) defined as follows: $f \in \mathscr{A}^{-n}$ iff $|f(z)| \leq C_t (1 - |z|)^{-n}$, where C_t depends on f.

1. Introduction: generalized Blaschke products

Non-Nevanlinna classes of analytic functions have been a subject of recent interest, in particular with respect to questions of zero sets and factorization. One example of such a class is given by \mathcal{A}^{-n} ($0 < n < \infty$), the class of all functions analytic in the unit disc satisfying

$$|f(z)| \leq C(1 - |z|)^{-n}$$
 (|z| < 1)

for some C > 0. If we equip \mathcal{A}^{-n} with the norm

$$||f||_{-n} = \sup_{|z|<1} (1-|z|)^n |f(z)|,$$

then it becomes a Banach space. These spaces are closely related to the Bergman A^{p} spaces (0 defined by

$$f \in A^p \Leftrightarrow \iint_{|z| < 1} |f(z)|^p dx dy < \infty, f \text{ analytic in } |z| < 1.$$

For $p \ge 1$, A^p is also a Banach space under the obvious norm, and for all positive p and n, the following inclusions hold:

$$\mathscr{A}^{-n} \subset A^{(1/n)+\varepsilon}, \forall \varepsilon > 0; \qquad A^{p} \subset \mathscr{A}^{-2/p}.$$

(The second inclusion follows from the fact that $|f(z)|^p$ is subharmonic.)

Received July 6, 1976

Vol 27, 1977

The classes \mathscr{A}^{-n} , and their union $\mathscr{A}^{-\infty} = \bigcup_{(n>0)} \mathscr{A}^{-n}$, were studied extensively by B. Korenblum [3]. In dealing with the factorization of $\mathscr{A}^{-\infty}$, he constructed a generalization of the Blaschke product [3, sec. 6.1], and showed that if $\tilde{B}(z)$ is the generalized Blaschke product for any subset of the zero set of $f \in \mathscr{A}^{-n}$, then $g \in \mathscr{A}^{-4n-\epsilon} (\forall \varepsilon > 0)$, where $g = f/\tilde{B}$.

In his study of A^{p} zero sets, C. Horowitz [2, sec. 7] defined a different generalization of the Blaschke product, namely,

(1)
$$h(z) = \prod_{k=1}^{\infty} B_{z_k}(z) (2 - B_{z_k}(z))$$

where $B_a(z)$ is the usual Blaschke factor:

(2)
$$B_a(z) = \frac{|a|}{a} \frac{a-z}{1-\bar{a}z} \qquad (0 < |a| < 1); \ B_0(z) = z.$$

Horowitz proved that if $\{z_k\}$ is any subset of the zero set of $f \in A^p$, and h(z) is as in (1), then f/h also belongs to the same A^p . (As we shall soon see, Horowitz's product does the same job for \mathcal{A}^{-n} spaces.)

We now turn to functions characterized by an exponential growth rate. For $0 < n < \infty$, let \mathscr{B}^{-n} denote the algebra of all functions analytic in |z| < 1, which satisfy

$$|f(z)| \le \exp\left(\frac{C}{(1-|z|)^n}\right) \qquad (|z|<1)$$

for some C > 0.

H. S. Shapiro and A. L. Shields [4] obtained the following interesting result: If $f \in \mathcal{B}^{-n}$, n < 1, then those zeros $\{z_k\}$ of f which lie on a single radius satisfy the Blaschke condition $\Sigma(1-|z_k|) < \infty$.

Again, we have a related hierarchy of algebras B^{p} (0), defined as follows:

$$f \in B^p \Leftrightarrow \iint_{|z| < 1} (\log^+ |f(z)|)^p dx dy < \infty, \quad f \text{ analytic in } |z| < 1.$$

Beller [1] studied the zero sets of B^{p} functions. \mathcal{B}^{-n} and B^{p} are related by the following inclusions:

$$\mathscr{B}^{-n} \subset B^{(1/n)+\varepsilon}, \, \forall \varepsilon > 0 \, (0 < n < \infty); \, B^p \subset \mathscr{B}^{-2/p} \qquad (1 \le p < \infty)$$

As far as \mathscr{B}^{-n} classes are concerned, the utility of Horowitz's (or Korenblum's) product is limited by the fact that it converges only if $\Sigma(1 - |z_k|)^2 < \infty$, while for $f \in \mathscr{B}^{-n}$, $n \ge 1$, it is possible for $\Sigma(1 - |z_k|)^2$ to diverge, as we shall see

E. BELLER

in the sequel. In order to overcome this difficulty, we define, for m > 0, the following product:

(3)
$$h_m(z) = \prod_{k=1}^{\infty} (1 - \{1 - B_{z_k}(z)\}^m),$$

where $B_{z_k}(z)$ is the Blaschke factor as in (2). Since $w = 1 - B_{z_k}(z)$ lies within the disc |w-1| < 1 for |z| < 1, we are able to take the principal branch of $\{1 - B_{z_k}(z)\}^m$ in case *m* is not an integer.

In view of the inequality

(4)
$$|1-B_{z_k}(z)| \leq \frac{2}{1-r} (1-|z_k|) \quad (|z| \leq r),$$

we conclude that the product (3) converges if $\sum (1 - |z_k|)^m < \infty$, and, in that case, defines a function analytic in the unit disc. Note that $h_1(z)$ is just the classical Blaschke product, while $h_2(z)$ is the Horowitz-Blaschke product (1).

It is obvious that $h_m(z)$ vanishes at all the z_k . For $m \leq 6$, it has no other zeros; this is a consequence of the following lemma:

LEMMA 1. If
$$0 < m \le 6$$
 and $0 < |w| < 1$, then $(1 - w)^m \ne 1$.

PROOF. We may assume, without loss of generality, that $0 \le \arg(1-w) < \pi/2$. If $(1-w)^m$ were equal to 1, then we would have |1-w| = 1, which implies that $0 < \arg(1-w) < \pi/3$. Thus, $0 < \arg(1-w)^m < m\pi/3 \le 2\pi$, a contradiction.

It is easily seen that Lemma 1 no longer holds when m > 6, and thus, for such m, $h_m(z)$ cannot be used for any kind of factorization. For our specific purpose, we will need an inequality which holds only for $m \leq 3$:

LEMMA 2. If $0 < m \leq 3$ and |w| < 1, then

(5)
$$|1-(1-w)^m| \ge 1-(1-|w|)^m$$
.

PROOF. Let us write $1 - w = re^{i\theta}$. We may again assume that $0 \le \theta < \pi/2$. Now $\arg(1-w)^m = m\theta < 3\pi/2$. Thus, if $m\theta \ge \pi/2$, the left-hand side of (5) is greater than 1, and the inequality certainly holds. Consequently, we may assume that $m\theta < \pi/2$.

Now inequality (5) is equivalent to $F(\theta) \ge 0$, $(0 \le \theta < \pi/2)$, where

$$F(\theta) = r^{2m} - 2r^m \cos m\theta - (1 - \{1 + r^2 - 2r \cos \theta\}^{\frac{1}{2}})^{2m} + 2(1 - \{1 + r^2 - 2r \cos \theta\}^{\frac{1}{2}})^m.$$

We have F(0) = 0, and if one keeps in mind that $m\theta < \pi/2$, a simple calculation shows that $F'(\theta) > 0$ for $0 < \theta < \pi/2$.

In the next section, we will use our product to factor out the zeros of \mathscr{A}^{-n} functions in such a way that the quotient remains in \mathscr{A}^{-n} ; in Section 3, the same will be done for \mathscr{B}^{-n} functions with n < 2. (We are unable to extend the \mathscr{B}^{-n} result to $n \ge 2$ because, in that case, inequality (5) breaks down.) As for the growth rate of $h_m(z)$ itself, a straightforward estimate based on (4) yields an upper bound on the growth, namely

$$|h_m(z)| < \exp\left(\frac{2^m K}{(1-|z|)^m}\right)$$

where $K = \sum_{k=1}^{\infty} (1 - |z_k|)^m$. What yet remains to be clarified is the precise growth rate for given $\{z_k\}$.

2. Factorization of \mathcal{A}^{-n} functions

THEOREM 1. Let $\{z_k\}$ be any subset of the zero set of $f \in \mathcal{A}^{-n}$ $(0 < n < \infty)$, and for any $1 < m \leq 3$, let $h_m(z)$ be the generalized Blaschke product for $\{z_k\}$, as in (3). Then

(i) $h_m(z)$ is analytic in |z| < 1, with zeros precisely at $\{z_k\}$.

(ii) Set $g = f/h_m$. There exists a number A(n, m), depending only on n and m, such that

$$||g||_{-n} \leq A(n,m)||f||_{-n}$$

COROLLARY 1. Every subset of an \mathcal{A}^{-n} zero set is an \mathcal{A}^{-n} zero set.

Before proving Theorem 1, we must establish some preliminary facts:

PROPOSITION 1. If $f \in \mathcal{A}^{-n}$ $(0 < n < \infty)$, with zero set $\{a_k\}$, and if $f(0) \neq 0$, then

(6)
$$\prod_{k=1}^{N} |a_k|^{-1} \leq \frac{e^{n+1}C}{|f(0)|} N^n \qquad (N = 1, 2, 3, \cdots).$$

where $C = ||f||_{-n}$.

REMARK 1. Inequality (6) implies the well-known conclusion that $\Sigma(1-|a_k|)^{1+\epsilon} < \infty$ for all $\epsilon > 0$.

REMARK 2. Using the same construction as Horowitz [2, Sec. 4], it is not difficult to see that the exponent of N in Proposition 1 is the best possible, and that for $0 < n < p < \infty$, there exist \mathcal{A}^{-p} zero sets which are not \mathcal{A}^{-n} zero sets.

PROOF OF PROPOSITION 1. First let us assume that $\{a_k\}$ is an ordered zero

E. BELLER

sequence of f, i.e., $0 < |a_1| \le |a_2| \le \cdots$. From Jensen's formula we can conclude (cf. [2, Sec. 3]) that for $0 \le r < 1$, and for all positive integers N,

(7)
$$|f(0)| \prod_{k=1}^{\infty} \frac{r}{|a_k|} \leq \exp\left((2\pi)^{-1} \int_0^{2\pi} \log |f(re^{i\theta})| d\theta\right)$$

Since $||f||_{-n} = C$, the right hand side of (7) is at most $C/(1-r)^n$, so that

$$\prod_{k=1}^{N} |a_k|^{-1} \leq C |f(0)|^{-1} r^{-N} (1-r)^{-n} \qquad (0 < r < 1; N = 1, 2, 3, \cdots).$$

For each N, choose r = N/(N + n). Elementary estimates then yield (6). If we arbitrarily reorder the zero sequence of f, then (6) holds a fortiori.

LEMMA 3. Let N be a natural number, and let $F \in C^1[0, 1]$ such that F(x) is strictly increasing and xF'(x)/F(x) is strictly decreasing. If $0 < a_1 \le a_2 \le \cdots \le a_N \le 1$ and $0 < b_1 \le b_2 \le \cdots \le b_N < 1$, and if

$$\prod_{k=1}^{n} a_k \geq \prod_{k=1}^{n} b_k \qquad (n = 1, 2, \cdots, N),$$

then

$$\prod_{n=1}^{N} F(a_n) \ge \prod_{n=1}^{N} F(b_n).$$

PROOF. Horowitz [2a, lemma 7.12] proved a special case of this lemma, in which F(x) = x(2-x), $b_1 = 1/C$, and $b_k = ((k-1)/k)^{\beta}$, $(k \ge 2)$, for some $\beta > 0$. The proof of our generalized lemma proceeds exactly as his proof, to which the reader is referred. The only detail to be checked is that

$$G(\delta) \equiv F(a_n e^{-\delta}) \{F(a_{n+1} e^{\delta/k})\}^k$$

is a strictly decreasing function of δ for $\delta > 0$, where $a_n \leq a_{n+1} < 1$, and k is any natural number. But an elementary calculation shows that $G'(\delta) < 0$ iff xF'(x)/F(x) is strictly decreasing.

LEMMA 4. Let n and C be positive numbers, and let m > 1. Let $0 < a_1 \le a_2 \le \cdots \le 1$. If

$$\prod_{k=1}^{N} a_{k}^{-1} \leq C N^{n}$$

for all natural N, then

(8)
$$\prod_{k=1}^{\infty} \{1 - (1 - a_k)^m\}^{-1} \leq CB(n, m),$$

where B(n, m) depends only on n and m.

PROOF. Let us first assume that $C \ge 2^n$. Then we can apply Lemma 3, with $F(x) = 1 - (1 - x)^m$, $b_1 = 1/C$, $b_k = (1 - 1/k)^n$ $(k = 2, 3, \dots)$, from which we can conclude that

(9)
$$\prod_{k=1}^{\infty} \{1-(1-a_k)^m\}^{-1} \leq \prod_{k=1}^{\infty} \{1-(1-b_k)^m\}^{-1}.$$

Now set

(10)
$$N = \max([1/(2n)], [2^{1/m}2n]),$$

where $[\cdot]$ is the greatest-integer function. We have

(11)
$$\prod_{k=1}^{N} \{1 - (1 - b_k)^m\}^{-1} \leq \prod_{k=1}^{N} b_k^{-1} = CN^n.$$

Now if n > 1, we have $b_k > 1 - n/k$, and if 0 < n < 1, $b_k > 1 - (n/k) - 1/(2k^2 - 2k)$. Thus, in any case, $b_k > 1 - 2n/k$ provided that $k \ge 1 + 1/(2n)$. If, in addition, $k \ge 2^{1/m} 2n$, then we have $(2n/k)^m < \frac{1}{2}$ and therefore

$$-\log(1-(1-b_k)^m) \leq -\log(1-(2n/k)^m) < \frac{3}{2} \left(\frac{2n}{k}\right)^m.$$

Thus, taking (10) into account, we have

$$\log \prod_{k=N+1}^{\infty} \{1-(1-b_k)^m\}^{-1} < \sum_{k=N+1}^{\infty} \frac{3}{2} \left(\frac{2n}{k}\right)^m < \frac{3(2n)^m}{2(m-1)N^{m-1}}.$$

Combining this with (9) and (11) yields

$$\prod_{k=1}^{\infty} \{1 - (1 - a_k)^m\}^{-1} \leq CD(n, m)$$

where $D(n, m) = N^n \exp(3(2n)^m / \{2(m-1)N^{m-1}\})$, and N is given by (10). If $c < 2^n$, then (8) remains correct if we write $B(n, m) = 2^n D(n, m)$.

PROOF OF THEOREM 1. Part (i) is true in view of Lemma 1 and the first remark to Proposition 1. To prove (ii), set $c_w(z) = (w - z)/(1 - \bar{w}z)$, (|w| < 1), and $f_w(z) = f(c_w(z))$. Writing $C = ||f||_{-n}$, we have

(12)
$$|f_w(z)| \leq \frac{C}{\left(1 - \left|\frac{w-z}{1-\bar{w}z}\right|\right)^n} < \frac{2^n C(1-|w|)^{-n}}{(1-|z|)^n},$$

the last inequality following from an elementary estimate.

Let $\{a_k\}$ be the complete zero set of f(z). Then $\{c_w(a_k)\}$ is the complete zero

E. BELLER

set of $f_w(z)$. Now let $\{z_k\}$ be an arbitrary subset of the zero set of f. Writing $g = f/h_m$, and taking into account Lemma 2, together with the fact that

$$|B_{a_k}(w)| = |c_{a_k}(w)| = |c_w(a_k)|,$$

we have

(13)
$$|g(w)| \leq |f(w)| \prod_{k=1}^{\infty} (1 - \{1 - |B_{z_k}(w)|\}^m)^{-1} \leq |f(w)| \prod_{k=1}^{\infty} (1 - \{1 - |c_w(a_k)|\}^m)^{-1}.$$

Now assume that $f_w(0) \equiv f(w) \neq 0$. Applying Proposition 1 to f_w , in light of (12), we conclude that

(14)
$$\prod_{k=1}^{N} |c_w(a_k)|^{-1} \leq \frac{e(2e)^n C(1-|w|)^{-n}}{|f(w)|} N^n \qquad (N=1,2,3,\cdots).$$

Lemma 4, applied to (14), and combined with (13), finally yields

$$|g(w)| \leq CA(n,m)(1-|w|)^{-n}.$$

By continuity, this inequality holds also at those w for which f(w) = 0.

3. Factorization of \mathcal{B}^{-n} functions

We begin with an estimate on the moduli of the zeros of \mathcal{B}^{-n} functions.

THEOREM 2. Let $f \in \mathcal{B}^{-n}$ $(0 < n < \infty)$ be such that

(15)
$$|f(z)| \leq \exp\left(\frac{C}{(1-|z|)^n}\right) \quad (|z|<1)$$

If $\{a_k\}$ is its zero set, and if $f(0) \neq 0$, then

(16)
$$\prod_{k=1}^{N} |a_{k}|^{-1} \leq |f(0)|^{-1} e^{F(n)C} \exp\{E(n)C^{1/(n+1)}N^{n/(n+1)}\} \qquad (N = 1, 2, \cdots),$$

where E(n) and F(n) depend only on n.

PROOF. First assume that $\{a_k\}$ is an ordered zero sequence. From Jensen's formula and (15) we conclude that

$$\sum_{k=1}^{N} \log \frac{1}{|a_k|} \leq \frac{C}{(1-r)^n} - N \log r - \log |f(0)|$$

for all 0 < r < 1, and for $N = 1, 2, 3, \cdots$.

For $N \ge (1/3)nC2^{n+1}$, we choose $r = 1 - (2nC/3N)^{1/(n+1)}$. For such N we have $r \ge \frac{1}{2}$, and therefore $-\log r \le (3/2)(1-r)$ holds. Substitution into (17) yields

(18)
$$\sum_{k=1}^{N} \log \frac{1}{|a_k|} \leq E(n) C^{1/(n+1)} N^{n/(n+1)} - \log |f(0)| \qquad (N \geq (1/3) n 2^{n+1} C),$$

where $E(n) = (2n/3)^{1/(n+1)} + (2n/3)^{-n/(n+1)}$. For $N < (1/3)n2^{n+1}C$,

(19)
$$\prod_{k=1}^{N} |a_k|^{-1} \leq \prod_{k=1}^{N^*} |a_k|^{-1} \leq \frac{e^{F(n)C}}{|f(0)|},$$

where $N^* = [2^{n+1}nC/3]$, and $F(n) = 2^{n(n+2)/(n+1)}(n/3)^{n/(n+2)}E(n)$. Inequalities (18) and (19) together yield (16) for all N. If $\{a_k\}$ is arbitrarily reordered, then (16) holds a fortiori.

REMARK. If f(z) has a zero of order p at z = 0, then one needs only to divide by z^{p} before applying Theorem 2.

COROLLARY 2. If $f \in \mathcal{B}^{-n}$ $(0 < n < \infty)$, with zero set $\{a_k\}$, then for all $\varepsilon > 0$,

(20)
$$\sum_{k=1}^{\infty} (1-|a_k|)^{n+1+\varepsilon} < \infty.$$

PROOF. Let $\{a_k\}$ be ordered. It follows from Theorem 2 that $\sum_{k=1}^{N} (1 - |a_k|) = O(N^{n/(n+1)})$. Since $\{|a_k|\}$ is non-decreasing, we have $N(1 - |a_N|) \leq \sum_{k=1}^{N} (1 - |a_k|)$, and therefore $1 - |a_k| = O(k^{-1/(n+1)})$, which implies (20).

, REMARK. With the aid of a Horowitz-type construction used by Beller in [1, \vec{p} . 79], it is not difficult to show that the exponent of N in Theorem 2 is sharp. Consequently, the n + 1 appearing in the exponent of (20) is best possible. In the same way, for n < p, one can construct \mathcal{B}^{-p} zero sets which are not \mathcal{B}^{-n} zero sets.

LEMMA 5. Let $0 < n < \infty$, and m > n + 1. Set $\beta = n/(n + 1)$. There exists a number G(n, m), depending only on n and m, such that for $b \ge G(n, m)$ and $a \ge \exp(-b(2-2^{\beta}))$, the following implication holds:

If $0 < a_1 \leq a_2 \leq \cdots \leq 1$, and

$$\prod_{k=1}^{N} a_{k}^{-1} \leq a \exp(bN^{\beta}) \qquad (N = 1, 2, 3, \cdots)$$

then

(21)
$$\prod_{k=1}^{\infty} \{1 - (1 - a_k)^m\}^{-1} \leq a \exp(3b^{n+1}).$$

PROOF. After applying Lemma 3 to the case where $F(x) = 1 - (1 - x)^m$ and

$$b_1 = e^{-b}/a, \ b_k = \exp\{-b(k^{\beta}-(k-1)^{\beta})\}$$
 $(k = 2, 3, \cdots),$

we conclude that

(22)
$$\prod_{k=1}^{\infty} \{1 - (1 - a_k)^m\}^{-1} \leq \prod_{k=1}^{\infty} \{1 - (1 - b_k)^m\}^{-1}.$$

Thus, we must estimate the right hand side of (22). Setting $N = [b^{n+1}]$, we have

(23)
$$\prod_{k=1}^{N} \{1 - (1 - b_k)^m\}^{-1} \leq \prod_{k=1}^{N} b_k^{-1} = a \exp(bN^{\beta}) \leq a \exp(b^{n+1}).$$

In light of the elementary inequality

$$k^{\beta} - (k-1)^{\beta} \leq k^{\beta-1} (0 < \beta < 1; k = 1, 2, \cdots)$$

we have

(24)
$$\log \prod_{k=N+1}^{\infty} \{1-(1-b_k)^m\}^{-1} < -\sum_{k=N+1}^{\infty} \log (1-\{1-\exp(-bk^{\beta-1})\}^m).$$

Now there exists a number K_m , $0 < K_m \leq \infty$, such that

$$-\log(1-(1-e^{-x})^m) < x^m \qquad (0 < x < K_m).$$

Indeed, since m > 1, we have

$$-\log(1-(1-e^{-x})^m) = x^m - \frac{1}{2}mx^{m+1} + \text{higher powers of } x.$$

Thus, if $b \ge K_m^{-1/n}$, this insures that for $k \ge N+1$, we have $bk^{\beta-1} < K_m$, and therefore

(25)
$$-\sum_{k=N+1}^{\infty} \log \left(1 - \{1 - \exp\left(-bk^{\beta-1}\right)\}^{m}\right) < \sum_{k=N+1}^{\infty} b^{m} k^{-m/(n+1)}$$
$$< b^{m} (b^{n+1} - 1)^{-(m-n-1)/(n+1)}.$$

Now

(26)
$$b^m (b^{n+1}-1)^{-(m-n-1)/(n+1)} \leq 2b^{n+1}$$

provided

$$b \ge H(n, m) \equiv (1 - 2^{-(n+1)/(m-n-1)})^{-1/(n+1)}.$$

Thus, if we set $G(n, m) = \max(K_m^{-1/n}, H(n, m))$, then (22), (23), (24), (25), and (26) together yield (21).

We are now able to prove the main theorem:

THEOREM 3. Let $f \in \mathcal{B}^{-n}$ (0 < n < 2), let m be such that n + 1 < m < 3, and let $\{z_k\}$ be any subset of the zero set of f. If $h_m(z)$ is the generalized Blaschke product for $\{z_k\}$, as in (3), then

- (i) $h_m(z)$ is analytic in |z| < 1 with zeros precisely at $\{z_k\}$.
- (ii) $f/h_m \equiv g \in \mathcal{B}^{-n}$.

COROLLARY 3. For n < 2, every subset of a \mathscr{B}^{-n} zero set is a \mathscr{B}^{-n} zero set.

PROOF OF THEOREM 3. Part (i) follows immediately from Corollary 2. To prove (ii), we use the same notation as in the proof of Theorem 1. If

$$|f(z)| \le \exp\left(\frac{C}{(1-|z|)^n}\right) \qquad (|z|<1),$$

then, analogous to inequality (12), we have, for any |w| < 1,

(27)
$$|f_w(z)| \leq \exp\left(\frac{2^n C(1-|w|)^{-n}}{(1-|z|)^n}\right) \quad (|z|<1).$$

Assume, again, that $f(w) \neq 0$. Keeping (27) in mind, Theorem 2, applied to f_w , yields

(28)
$$\prod_{k=1}^{N} \frac{1}{|c_w(a_k)|} \leq \frac{1}{|f(0)|} \exp\left(\frac{F^*(n)C}{(1-|w|)^n}\right) \exp\left(\frac{E^*(n)C^{1/(n+1)}}{(1-|w|)^n}N^{n/(n+1)}\right),$$

for $N = 1, 2, 3, \dots$, where $F^*(n) = 2^n \max(1, F(n))$, and $E^*(n) = E(n)2^{n/(n+1)}$. We now apply Lemma 5 to (28) with

$$a = \frac{1}{|f(w)|} \exp\left(\frac{F^*(n)C}{(1-|w|)^n}\right); \qquad b = \frac{E^*(n)C^{1/(n+1)}}{(1-|w|)^{n/(n+1)}}.$$

(Note that (27), for z = 0, together with the fact that $F^*(n) \ge 2^n$, implies that $a \ge \exp(-b(2-2^{\beta}))$, as required.) The condition $b \ge G(n, m)$ in Lemma 5 is equivalent to $|w| \ge 1 - J(n, m)$, where $J = (E^*/G)^{(n+1)/n}C^{1/n}$. Thus, for such w, Lemma 5, combined with (13), yields

$$|g(w)| \leq \exp\left(\frac{K(n)C}{(1-|w|)^n}\right),$$

where $K(n) = F^*(n) + 3\{E^*(n)\}^{n+1}$. Now set $L = \sup_{\{|w| \le 1-J\}} |g(w)|$ and $M = \max(e, L)$. Then for all w (such that $f(w) \ne 0$) we have

$$|g(w)| \leq \exp\left(\frac{K(n)C\log M}{(1-|w|)^n}\right).$$

By continuity, this inequality holds also for those w which are zeros of f.

References

1. E Beller, Zeros of A^{p} functions and related classes of analytic functions, Israel J. Math. 22 (1975), 68-80.

2 C. Horowitz, Zeros of functions in the Bergman spaces, Duke Math. J 41 (1974), 693-710.

2a. C. Horowitz, Zeros of functions in the Bergman spaces, preprint.

3 B. Korenblum, An extension of the Nevanlinna theory, Acta Math. 135 (1975), 187-219.

4. H. S. Shapiro and A. L. Shields, On the zeros of functions with finite Dirichlet integral and some related function spaces, Math. Z. 80 (1962), 217-229.

DEPARTMENT OF MATHEMATICS

BAR-ILAN UNIVERSITY RAMAT GAN, ISRAEL