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F A C T O R I Z A T I O N  FOR N O N - N E V A N L I N N A  
CLASSES OF ANALYTIC FUNCTIONS 

BY 

E L I Y A H U  B E L L E R  

ABSTRACT 

A generalization of the Blaschke product is constructed. This product enables 
one to factor out the zeros of the members  of certain non-Nevanl inna classes of 
functions analytic in the unit disc, so that the remaining (non-vanishing) 
functions still belong to the same class. This is done for the classes ,~t-" 
( 0 < n < ~ )  and 3~-" ( 0 < n < 2 )  defined as follows: f E ~ r  " iff I f (z) l<= 

Ct ( l  - l z I)-", f ~ Y3 " i f f l f ( z ) l < e x p { Q ( 1 - I z  I) "},where C t dependson  f. 

1. Introduction: generalized Biaschke products 

Non-Nevanlinna classes of analytic functions have been a subject of recent 

interest, in particular with respect to questions of zero sets and factorization. 

One example of such a class is given by ~ - "  (0 < n < ~), the class of all functions 

analytic in the unit disc satisfying 

p f ( z ) l < - _ c ( 1 - l z l )  " (rz/< I) 

for some C >0 .  If we equip ~ - "  with the norm 

l[f[[ , = sup (1 -1z J ) " l f ( z ) l ,  
rzr<| 

then it becomes a Banach space. These spaces are closely related to the Bergman 

A '  spaces (0 < p < zc) defined by 

l E A  p ~z~ f f  I f ( z )]"dxdy<~, f  analytic in I z l < l .  
d 3  zr<-i 

For p ~_ 1, A p is also a Banach space under the obvious norm, and for all positive 

p and n, the following inclusions hold: 

.~-" C A  ('/"~+~, Ve > 0 ;  A p C~/-2/p. 

(The second inclusion follows from the fact that If(z)[ p is subharmonic.) 
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The classes M-", and their union ,d ~= U{,>or,-~-", were studied extensively 

by B. Korenblum [3]. In dealing with the factorization of M ~, he constructed a 

generalization of the Blaschke product [3, sec. 6.1], and showed that i f / 3 ( z )  is 

the generalized Blaschke product for any subset of the zero set of f E M-", then 

g C M-4"-'(Ve > 0), where g = f/IB. 
In his study of A p zero sets, C. Horowitz [2, sec. 7] defined a different 

generalization of the Blaschke product, namely, 

(1) h(z) = (-[ B ~ ( z ) ( 2 -  Bz,(Z)), 
k = l  

where Ba(z) is the usual Blaschke factor: 

(2) Bo(z)= lal  a - z  
a 1 - t~z  

(0<  l a l <  1); Bo(z) = z. 

Horowitz proved that if {z~ } is any subset of the zero set of f E A P, and h (z)  is as 

in (1), then f/h also belongs to the same A P. (As we shall soon see, Horowitz 's  

product does the same job for M-" spaces.) 

We now turn to functions characterized by an exponential growth rate. For 

0 < n < ~, let ~ - "  denote the algebra of all functions analytic in I z I < 1, which 

satisfy 

' f (z) l<=exp((l_~zl) ,  ) (Izl < 1 )  

for some C > 0. 

H. S. Shapiro and A. L. Shields [4] obtained the following interesting result: If 
f E ~ - " ,  n < 1, then those zeros {zk} o f f  which lie on a single radius satisfy the 
Blaschke condition E(1 - I zk I) < oo. 

Again, we have a related hierarchy of algebras B P ( 0 < p  < oo), defined as 

follows: 

f (  (log+[f(z)l)Pdxdy<oo, f analyticin I z l < l .  f ~ B  p 
3 J J  z]<l 

Belier [1] studied the zero sets of B" functions. ~ - "  and B p are related by the 

following inclusions: 

- "  C B ('/"~+', Vt" > 0 (0 < n < oo); B p C ~3 -2/p (1 _-< p < ~o). 

As far as 3~-" classes are concerned, the utility of Horowitz's (or Koren- 

blum's) product is limited by the fact that it converges only if E(1 - I zk I) 2 < 0% 

while for f E ~ ", n _-> 1, it is possible for 2(1 - I zk I) 2 to diverge, as we shall see 
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in the sequel.  In o rder  to ove rcome  this difficulty, we define, for  m > 0, the 

following product :  

(3) h , , (z )  = IeI (1 - { 1  - Bzk (z )}" ), 
k = l  

where  Bzk(z) is the Blaschke factor  as in {2). Since w = 1 - B ~ ( z )  lies within the 

disc t w - 1  I < l  for  l z I <  1, we are able to take the principal branch of 
B " {.1- ~(z)}  in case m is not an integer.  

In view of the inequali ty 

(4) I I - S ~ ( z ) l < = l ! r ( 1 - 1 z k l )  (Iz [=< r), 

we conclude that the produc t  (3) converges  if Z(1 - I zk l) ~" < w, and, in that case, 

defines a funct ion analytic in the unit disc. Note  that h,(z)  is just the classical 

Blaschke product ,  while h2(z) is the Horowi tz -B laschke  product  (1). 

It is obvious that h,,(z)  vanishes at all the z~. For  m = 6, it has no o ther  zeros;  

this is a consequence  of the following lemma: 

LEMMA 1. I f O < m < - 6  and 0 < l w l < l ,  then ( 1 - w ) " ~ l .  

PROOF. We may assume, without  loss of generali ty,  that 0_-< arg ( 1 -  w ) <  

7r/2. If (1 - w)"  were equal  to 1, then we would have I1 - w[ = 1, which implies 

that 0 <  a r g ( 1 -  w ) <  7r/3. Thus, 0 <  a r g ( 1 -  w)"  < mrr/3-< 2rr, a 

contradict ion.  �9 

It is easily seen that L e m m a  1 no longer holds when m > 6, and thus, for  such 

m, h,, ( z )  cannot  be used for any kind of factorizat ion.  For  our  specific purpose,  

we will need an inequali ty which holds only for  rn =< 3: 

LEMMA 2. If  0 < m <- 3 and ] w l < 1, then 

(5) [1 - ( 1 -  w)"  I_- > 1 - ( 1 - I w  [)". 

PROOF. Let  us write 1 - w = re'". We may again assume that 0 =< 0 < 7r/2. 

Now a r g ( 1 -  w)"  = mO< 37r/2. Thus,  if mO _-> v /2 ,  the lef t -hand side of (5) is 

g rea te r  than 1, and the inequa/i ty certainly holds. Consequent ly ,  we may assume 

that mO< ~r /2. 

Now inequali ty (5) is equivalent  to F(O) _-> 0, (0_<- 0 < #r/2), where  

F(O) = r TM - 2r" cos mO - (1 - {1 + r 2 - 2r cos 0}~) TM + 2(1 - {1 + r 2 - 2r cos 0}t) ". 

We  have F(0)  = 0, and if one  keeps in mind that mO < rr/2, a simple calculation 

shows that F'(O)>O for  0 <  0 < 7r/2. �9 
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In the next section, we will use our product to factor out the zeros of ~t-" 

functions in such a way that the quotient remains in d - ~  ; in Section 3, the same 

will be done for @-n functions with n < 2. (We are unable to extend the @-~ 

result to n ->_ 2 because, in that case, inequality (5) breaks down.) As for the 

growth rate of h, ,(z) itself, a straightforward estimate based on (4) yields an 

upper bound on the growth, namely 

[h~ , (z ) l<exp( (  1 2mK .'~, -Izl)'; 

where K = E~.~(1 - [zk [)". What yet remains to be clarified is the precise growth 

rate for given {z~}. 

2. Faetorization of ~ - "  functions 

THEOREM 1. Let {z~ } be any subset of  the zero set o f f  E ~ - "  (0 < n < oo), and 

lot any 1 < m <= 3, let h ,  ( z )  be the generalized Blaschke product for {z, }, as in 

(3). Then 

(i) h, , (z)  is analytic in Izl< 1, with zeros precisely at {zk}. 

(ii) Set g = [ /h . .  There exists a number A (n, m),  depending only on n and m, 

such that 

II g It-, --< A(n ,  m)l l f  I1-~. 

PROPOSITION 1. 

then 

COROLLARY 1. Every subset of an ~ - "  zero set is an ~t-" zero set. 

Before proving Theorem 1, we must establish some preliminary facts: 

I f  f E ~t-" (0 < n < oo), with zero set {ak }, and if f(O) ~ 0, 

(6) 

where C = II f I1-. 

REMARK 1. Inequality (6) 
E(1 - t ak [)1+. < ~ for all e > O. 

-I en+lC 
]a~l - ' <  N" (N = 1 ,2 ,3 , . . . ) ,  

= I f ( o )  l 

implies the well-known conclusion that 

REMARK 2. Using the same construction as Horowitz [2, Sec. 4], it is not 

difficult to see that the exponent of N in Proposition 1 is the best possible, and 

that for 0 < n < p < 0% there exist ~-P  zero sets which are not sr -n zero sets. 

PROOF OF PROPOSITION l. First let us assume that {ak} is an ordered zero 
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(7) 

Since I] f II-- 

N 

sequence of f, i.e., 0 < l a, [ _-< l a2 ] = < .  �9 .. From Jensen's formula we can conclude 

(cf. [2, Sec. 3]) that for 0 =< r < 1, and for all positive integers N, 

If(O)l ]~I_ 1 r ~ - - <  exp ((2"n') ' f :" loglf(re '~ 

= C, the right hand side of (7) is at most C / ( 1 -  r)", so that 

I-I l ak I -'<- CIf(O)J 'r N(1 - r)-" 
k = l  

( 0<  r < 1 ;N  = 1 ,2 ,3 , . . . ) .  

For each N, choose r = N / ( N  + n). Elementary estimates then yield (6). If we 

arbitrarily reorder the zero sequence of f, then (6) holds afortiori. �9 

LEMMA 3. Let N be a natural number, and let F E C1[0, 1] such that F(x)  is 

strictly increasing and xF'(x )/F(x ) is strictly decreasing. I f  0 < as <<- a2 < " "  <= 

aN<--1 and O < b~ < b2 < ' ' '  < bN < l, and if 

I-] ak -> ~ bk (n = 1 ,2 , . .  ",N), 
k = l  k = l  

then 
N N 

[-I F(a,)>- 1-I F(b.). 
n = l  n = l  

PROOF. Horowitz [2a, lemma 7.12] proved a special case of this lemma, in 

which F ( x ) =  x ( 2 - x ) ,  b~ = 1/C, and bk = ((k - 1)/k) ~, (k ->2), for some/3 >0 .  

The proof of our generalized lemma proceeds exactly as his proof, to which the 

reader is referred. The only detail to be checked is that 

G(6) =- F(a.e 8){F(a,~,eS/k)Ik 

is a strictly decreasing function of 6 for 6 > 0, where a, _--- a,+l < 1, and k is any 

natural number. But an elementary calculation shows that G ' ( 6 ) < 0  iff 

xF' (x) /F(x)  is strictly decreasing. �9 

Let n and C be positive numbers, and let m > 1. Let 0 < a, <- a2 <= LEMMA 4. 

�9 . . = < 1 .  g 

for all natural N, then 

N 

I-I a~ ~ CN" 
k = l  

(8)  l-]  {1 - (1 - a k ) " } - '  ~ CB(n, m), 
k = l  

where B(n, m) depends only on n and m. 
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PROOV. Let us first assume that C => 2". Then we can apply Lemma 3, with 

F ( x ) =  1 -  (1 -  x)", b,-- 1/C, bk = ( 1 - I / k ) "  (k = 2 ,3 , . . . ) ,  from which we can 

conclude that 

(9) FI /1- (1-a~)~'?1--<  H ~ I - ( I -  bk)~t -'- 
k - 1  k = l  

Now set 

(10) N = max ([1/(2n)], [2"m 2n]), 

where [. ] is the greatest-integer function. We have 

N N 

(11) I-I {1 - (1 - bk)"}- '  ~ l-I bk 1= CN". 
k = l  k = l  

Now if n > l ,  we have b k > l - n / k ,  and if 0 < n < l ,  bk> 

1- (n /k ) - l / (2k  2 - 2 k ) .  Thus, in any case, b k > l - 2 n / k  provided that k=> 

1 + 1/(2n). If, in addition, k >= 21/" 2n, then we have (2n/k)"  < ~ and therefore 

- l o g o  - (1 - b~)") N - log (1  - (2n/k)")<-~ 

Thus, taking (10) into account, we have 

1og~=N+l ~ {1-- (1-- bk)"}-l < k=u+12 ~ - -  < 2 ( m _ l ) N  "-1' 

Combining this with (9) and (11) yields 

{1 - (1 - ak) '}- '  _- < CD(n, m) 
k = l  

where D(n, m ) =  N" exp(3(2n)"/{2(m- 1)N"-~}), and N is given by (10). If 

c <2",  then (8) remains correct if we write B(n, m) = 2"D(n, m). �9 

PROOF OV THEoREM 1. Part (i) is true in view of Lemma 1 and the first remark 

to Proposition 1. To prove (ii), set cw(z) = ( w - z ) / ( 1 - ~ z ) ,  ( ] w l <  1), and 

fw(z)=f(cw(z)). Writing C = [If][_,, we have 

c < 2 " c 0 - t w f )  -~ 
(12) lf~(z)l<=( w-z )" 0 - 1 z l )  ~ ' 

1 -  1 - ~ , z  / 

the last inequality following from an elementary estimate. 

Let {a~ } be the complete zero set of f(z). Then {cw (ak)} is the complete zero 
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set of f~(z). Now let {ZE} be an arbitrary subset of the zero set of f. Writing 

g = f/h,,, and taking into account Lemma 2, together with the fact that 

we have 

(13) 

I B~(w)l  = [c~,(w)l = [ c,(ak)[, 

Ig(w)I~I f (w)l  ~ (1-{1-1B,,(w)l}=) -' 
k=l 

[f(w)lI=I (1 - {1  - [c . (a , ) [}")- ' .  
k = l  

Now assume that f,(O)==-f(w)#O. Applying Proposition 1 to f,,  in light of 

(12), we conclude that 

N 
(14) I-I Ic~(ak)l - ` < e ( 2 e f C ( 1 - l w l ) - " N ~  ( N =  1 ,2 ,3 , . - . ) .  

k=, = If(w)l 

Lemma 4, applied to (14), and combined with (13), finally yields 

Ig(w)l < C A ( n , m ) ( 1 - [ w  I) -~. 

By continuity, this inequality holds also at those w for which f (w)= O. �9 

3. Factorization of ~ - n  functions 

We begin with an estimate on the moduli of the zeros of ~ - "  functions. 

THEOREM 2. 

(15) ( c )  
[f(z)[=<exp ( l - l E t )  n 

If {ak} is its zero set, and if f(O)#O, then 

N 

(16) I I  [at I-'<= If(O)l-'e~n~Cexp{E(n)C'~"*'N n/("§ 
k = l  

Let f E ~-"  (0 < n < oo) be such that 

( I zr< l ) .  

where E(n) and F(n) depend only on n. 

(N = 1 ,2 , . . . ) ,  

for a l l 0 < r < l ,  and for N = 1 , 2 , 3 , . . . .  

N 1 C 
log < N log r - log I f(0)[ 

k~, l a ~ l = ( 1 - r ) "  

PROOF. First assume that {ak} is an ordered zero sequence. From Jensen's 

formula and (15) we conclude that 
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For  N >= (1/3)nC2 "+', we choose r = 1 - (2nC/3N)  "("§ For  such N we have 

r => �89 and the re fore  - log r _-< (3/2) (1 - r) holds. Substi tut ion into (17) yields 

N ~ E ( n )  C'''"+''N"''"§ logl / (0) l  (N>(1 /3 )n2"+ 'C) ,  (18) Z log ~ - = 
k ~ l  

where  E ( n ) =  (2n/3)'~("*'+(2n/3)-"~("*'. For  N < (1/3)n2"+'C, 

e F(.)c 
N* 1-1 < 

(19) la~ I-'--< I-I lak = , 
,=, k=, If(0)[ 

where  N* = [2"§ and F ( n ) =  2"("§ Inequali t ies  (18) 

and (19) toge ther  yield (16) for  all N. If {ak} is arbitrari ly r eo rde red ,  then (16) 

holds afortiori. �9 

REMARK. If f ( z )  has a zero of o rde r  p at z = 0, then one  needs  only to divide 

by z p before  applying T h e o r e m  2. 

COROLLARY 2. I f f ~  ~ - "  ( 0 <  n < ~ ) ,  with zero set {ak}, then for all e > 0 ,  

(20) ~ (1 - t ak I) "+'+" < o~. 
k = l  

PROOF. Let  {ak} be ordered .  It follows f rom T h e o r e m  2 that Y~=,(1 - l a k  [) = 

O(N"'("+'). Since {[ a~ I} is non-decreasing,  we have N(1 - l aN I) --< s - [ak I), 

and there fore  1 - l ak I = O(k-~/("+'), which implies (20). �9 

REMARK. With the aid of a Horowi tz - type  construct ion used by Belier  in [1, 

t~. 79], it is not  difficult to show that the exponen t  of N in T h e o r e m  2 is sharp. 

Consequent ly ,  the n + 1 appear ing in the exponen t  of (20) is best possible. In the 

same way, for  n < p, one  can construct  ~ -p zero sets which are not ~ - "  zero 

sets. 

LEMMA 5. Let O< n < % and m > n + l. Set fl = n/ (n  + l). There exists a 

number G(n, m),  depending only on n and m, such that for b >= G(n, m )  and 

a -> exp ( -  b ( 2 -  2 ~)), the following implication holds: 

I f  O < a~ <-<_ a2 <= . . . <= l, and 

N 

I'-I a ~ < = a e x p ( b N o )  ( N = 1 , 2 , 3 , . . . )  
k = l  

then 

(21) ~ {1 - ( 1  - a~)"}- '  - -< a exp (3b"+'). 
k = l  
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After applying Lemma 3 to the case where F ( x )  -- 1 - (1 - x)" and 

b ~ = e - b / a ,  bk = e x p { - b ( k O - ( k - 1 ) o ) }  (k = 2 , 3 , . . . ) ,  

we conclude that 

(22) {1-(1-ak)"}  1=<~ {1_(1_ bk),.}-l. 
k = l  k = l  

Thus, we must estimate the right hand side of (22). Setting N = [b"+'], we have 

(23) 
N N 

I-I {1-  (1 -  b~)'}-I==_ I-I b~ '=  a e x p ( b N ~  < a exp(b"+'). 
k =1 k = l  

In light of the elementary inequality 

k e -  (k - 1)" =< k " - l ( 0 < / 3  < 1; k = 1,2 , - - . )  

we have 

(24) log I:I { 1 - ( 1 - b k ) " }  - 1 < -  ~ l o g ( 1 - { 1 - e x p (  - b k e  1)},.). 
k = N + l  k = N + I  

Now there exists a number K,,, 0 < K,, =< ~, such that 

- l o g ( l -  (1 - e ~)") < x"  (0 < x < K,,). 

Indeed, since m > 1, we have 

- log (1 - (1 - e -X)"  ) = x " - �89 m x  " +1 + higher powers of x. 

Thus, if b => K;, TM, this insures that for k => N +  1, we have bk ~ 1< K,,, and 

therefore 

- ~ l o g ( 1 - { 1 - e x p ( - b k "  i)},.)< ~ b. .k- . . / , .+, ,  
k = N ~ ' l  k - N + 1  

< b. ,N-~. ,  . w~.+l~< b , . ( b . + l _  1)-~ . . . .  w~.+u. 
(25) 

Now 

(26) 

provided 

b"  (b "+1 - 1) -~ . . . .  w~.+l~ __< 2b.+, 

b >= H ( n ,  m ) -~ (1 - 2 -~"*w<"-" ,,)-,/<,.,. 

Thus, if we set G ( n ,  m ) =  max(K,,  '/", H ( n ,  m) ) ,  then (22), (23), (24), (25), and 

(26) together yield (21). �9 

We are now able to prove the main theorem: 
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THEOREM 3. Let f ~ I~-" (0 < n < 2), let m be such that n + 1 < m < 3, and 

let {zk} be any subset of the zero set o f f .  I f  h , , ( z )  is the generalized Blaschke 

product for {zk}, as in (3), then 

(i) h,,(z ) is analytic in I z l <  1 with zeros precisely at {zk}. 

(ii) f / h,, =- g E Ya-". 

COROLLARY 3. For n < 2, every subset of a ~ - "  zero set is a ~ - "  zero set. 

PROOF OF THEOREM 3. Part (i) follows immediately from Corollary 2. To 

prove (ii), we use the same notation as in the proof of Theorem 1. If 

I f(z)l--<exp ( l - l z l ) "  (Izl <1) ,  

then, analogous to inequality (12), we have, for any [ w [ <  1, 

(27) I/w (z)l _-< exp { 2~C(1 - I w  I)-"~ \ (1 -1z l ) "  ] ( I z l < l ) "  

Assume, again, that f ( w )  ~ O. Keeping (27) in mind, Theorem 2, applied to fw, 

yields 

1 1 [ F * ( n ) C  \ /~,t,~t '-,/c.+,) x < i. *-~ V' l  ",~ tv,lt.+l)~ 
(28) k-,I~I I c w ( a ~ ) [ = l f ( o ) l e x p ~ , ( 1 - l w l ) " j e x p \  ( 1 - ] w [ ) "  '" ] '  

for N = 1 ,2 ,3 , . . . ,  where F * ( n ) = 2 " m a x ( 1 ,  F(n)) ,  and E * ( n ) =  E ( n ) 2  "l{"*t~. 

We now apply Lemma 5 to (28) with 

a - l f ( w ) r  ; b=(1-1w[)":~"+'," 

(Note that (27), for z = 0, together with the fact that F * ( n ) ~  2", implies that 
a -> e x p ( -  b ( 2 -  20)), as required.) The condition b >= G(n, m)  in Lemma 5 is 

equivalent to I w [ -  > 1 -  J(n, m),  where J = (E*/G)~"+'/"C TM. Thus, for such w, 

Lemma 5, combined with (13), yields 

( ), } g(w)l -< exp \ ( 1  - [w  I? 

where K ( n ) = F * ( n ) + 3 { E * ( n ) }  "+*. Now set L=supllwp~,_j~lg(w)l and M =  

max(e ,L) .  Then for all w (such that f ( w ) r  we have 

{ K ( n ) C l o g  M'~ 
tg(w)[--<exp~ ( l _ l w l ) -  ] "  

By continuity, this inequality holds also for those w which are zeros of [. �9 
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